crypto

廖雪峰
资深软件开发工程师,业余马拉松选手。

crypto模块的目的是为了提供通用的加密和哈希算法。用纯JavaScript代码实现这些功能不是不可能,但速度会非常慢。Nodejs用C/C++实现这些算法后,通过cypto这个模块暴露为JavaScript接口,这样用起来方便,运行速度也快。

MD5和SHA1

MD5是一种常用的哈希算法,用于给任意数据一个“签名”。这个签名通常用一个十六进制的字符串表示:

import crypto from 'node:crypto';

const hash = crypto.createHash('md5');

// 可任意多次调用update():
hash.update('Hello, world!');
hash.update('Hello, nodejs!');

console.log(hash.digest('hex')); // 7e1977739c748beac0c0fd14fd26a544

update()方法默认字符串编码为UTF-8,也可以传入Buffer。

如果要计算SHA1,只需要把'md5'改成'sha1',就可以得到SHA1的结果。还可以使用更安全的sha256sha512

Hmac

Hmac算法也是一种哈希算法,它可以利用MD5或SHA1等哈希算法。不同的是,Hmac还需要一个密钥:

import crypto from 'node:crypto';

const hmac = crypto.createHmac('sha256', 'secret-key');

hmac.update('Hello, world!');
hmac.update('Hello, nodejs!');

console.log(hmac.digest('hex')); // 80f7e22570...

只要密钥发生了变化,那么同样的输入数据也会得到不同的签名,因此,可以把Hmac理解为用随机数“增强”的哈希算法。

AES

AES是一种常用的对称加密算法,加解密都用同一个密钥。crypto模块提供了AES支持,但是需要自己封装好函数,便于使用:

import crypto from 'node:crypto';

function aes_encrypt(key, iv, msg) {
    const cipher = crypto.createCipheriv('aes-256-cbc', key, iv);
    // input encoding: utf8
    // output encoding: hex
    let encrypted = cipher.update(msg, 'utf8', 'hex');
    encrypted += cipher.final('hex');
    return encrypted;
}

function aes_decrypt(key, iv, encrypted) {
    const decipher = crypto.createDecipheriv('aes-256-cbc', key, iv);
    let decrypted = decipher.update(encrypted, 'hex', 'utf8');
    decrypted += decipher.final('utf8');
    return decrypted;
}

// key的长度必须为32bytes:
let key = 'Passw0rdPassw0rdPassw0rdPassw0rd';
// iv的长度必须为16bytes:
let iv = 'a1b2c3d4e5f6g7h8';
let msg = 'Hello, world!';
// 加密:
let encrypted_msg = aes_encrypt(key, iv, msg);
// 解密:
let decrypted_msg = aes_decrypt(key, iv, encrypted_msg);

console.log(`AES encrypt: ${encrypted_msg}`);
console.log(`AES decrypt: ${decrypted_msg}`);

运行结果如下:

AES encrypt: 11cd65e5fe7e7448b491efabee2f326a
AES decrypt: Hello, world!

可以看出,加密后的字符串通过解密又得到了原始内容。

注意到AES有很多不同的算法,如aes192aes-128-ecbaes-256-cbc等,AES除了密钥外还可以指定IV(Initial Vector),不同的系统只要IV不同,用相同的密钥加密相同的数据得到的加密结果也是不同的。加密结果通常有两种表示方法:hex和base64,这些功能Node.js全部都支持,但是在应用中要注意,如果加解密双方一方用Nodejs,另一方用Java、PHP等其它语言,需要仔细测试。如果无法正确解密,要确认双方是否遵循同样的AES算法,密钥和IV是否相同,加密后的数据是否统一为hex或base64格式。

Diffie-Hellman

DH算法是一种密钥交换协议,它可以让双方在不泄漏密钥的情况下协商出一个密钥来。DH算法基于数学原理,比如小明和小红想要协商一个密钥,可以这么做:

  1. 小明先选一个素数和一个底数,例如,素数p=97,底数g=5(底数是p的一个原根),再选择一个秘密整数a=123,计算A=g^a mod p=34,然后大声告诉小红:p=97,g=5,A=34
  2. 小红收到小明发来的pgA后,也选一个秘密整数b=456,然后计算B=g^b mod p=75,并大声告诉小明:B=75
  3. 小明自己计算出s=B^a mod p=22,小红也自己计算出s=A^b mod p=22,因此,最终协商的密钥s22

在这个过程中,密钥22并不是小明告诉小红的,也不是小红告诉小明的,而是双方协商计算出来的。第三方只能知道p=97g=5A=34B=75,由于不知道双方选的秘密整数a=123b=456,因此无法计算出密钥22

用crypto模块实现DH算法如下:

import crypto from 'node:crypto';

// xiaoming's keys:
let ming = crypto.createDiffieHellman(512);
let ming_keys = ming.generateKeys();

let prime = ming.getPrime();
let generator = ming.getGenerator();

console.log('Prime: ' + prime.toString('hex'));
console.log('Generator: ' + generator.toString('hex'));

// xiaohong's keys:
let hong = crypto.createDiffieHellman(prime, generator);
let hong_keys = hong.generateKeys();

// exchange and generate secret:
let ming_secret = ming.computeSecret(hong_keys);
let hong_secret = hong.computeSecret(ming_keys);

// print secret:
console.log('Secret of Xiao Ming: ' + ming_secret.toString('hex'));
console.log('Secret of Xiao Hong: ' + hong_secret.toString('hex'));

运行后,可以得到如下输出:

Prime: a8224c...deead3
Generator: 02
Secret of Xiao Ming: 695308...d519be
Secret of Xiao Hong: 695308...d519be

注意每次输出都不一样,因为素数的选择是随机的。

RSA

RSA算法是一种非对称加密算法,即由一个私钥和一个公钥构成的密钥对,通过私钥加密,公钥解密,或者通过公钥加密,私钥解密。其中,公钥可以公开,私钥必须保密。

RSA算法是1977年由Ron Rivest、Adi Shamir和Leonard Adleman共同提出的,所以以他们三人的姓氏的头字母命名。

当小明给小红发送信息时,可以用小明自己的私钥加密,小红用小明的公钥解密,也可以用小红的公钥加密,小红用她自己的私钥解密,这就是非对称加密。相比对称加密,非对称加密只需要每个人各自持有自己的私钥,同时公开自己的公钥,不需要像AES那样由两个人共享同一个密钥。

在使用Node进行RSA加密前,我们先要准备好私钥和公钥。

首先,在命令行执行以下命令以生成一个RSA密钥对:

openssl genrsa -aes256 -out rsa-key.pem 2048

根据提示输入密码,这个密码是用来加密RSA密钥的,加密方式指定为AES256,生成的RSA的密钥长度是2048位。执行成功后,我们获得了加密的rsa-key.pem文件。

第二步,通过上面的rsa-key.pem加密文件,我们可以导出原始的私钥,命令如下:

openssl rsa -in rsa-key.pem -outform PEM -out rsa-prv.pem

输入第一步的密码,我们获得了解密后的私钥。

类似的,我们用下面的命令导出原始的公钥:

openssl rsa -in rsa-key.pem -outform PEM -pubout -out rsa-pub.pem

这样,我们就准备好了原始私钥文件rsa-prv.pem和原始公钥文件rsa-pub.pem,编码格式均为PEM。

下面,使用crypto模块提供的方法,即可实现非对称加解密。

首先,我们用私钥加密,公钥解密:

import fs from 'node:fs';
import crypto from 'node:crypto';

// 从文件加载key:
function loadKey(file) {
    // key实际上就是PEM编码的字符串:
    return fs.readFileSync(file, 'utf8');
}

let
    prvKey = loadKey('./rsa-prv.pem'),
    pubKey = loadKey('./rsa-pub.pem'),
    message = 'Hello, world!';

// 使用私钥加密:
let enc_by_prv = crypto.privateEncrypt(prvKey, Buffer.from(message, 'utf8'));
console.log(enc_by_prv.toString('hex'));

let dec_by_pub = crypto.publicDecrypt(pubKey, enc_by_prv);
console.log(dec_by_pub.toString('utf8'));

执行后,可以得到解密后的消息,与原始消息相同。

接下来我们使用公钥加密,私钥解密:

// 使用公钥加密:
let enc_by_pub = crypto.publicEncrypt(pubKey, Buffer.from(message, 'utf8'));
console.log(enc_by_pub.toString('hex'));

// 使用私钥解密:
let dec_by_prv = crypto.privateDecrypt(prvKey, enc_by_pub);
console.log(dec_by_prv.toString('utf8'));

执行得到的解密后的消息仍与原始消息相同。

如果我们把message字符串的长度增加到很长,例如1M,这时,执行RSA加密会得到一个类似这样的错误:data too large for key size,这是因为RSA加密的原始信息必须小于Key的长度。那如何用RSA加密一个很长的消息呢?实际上,RSA并不适合加密大数据,而是先生成一个随机的AES密码,用AES加密原始信息,然后用RSA加密AES口令,这样,实际使用RSA时,给对方传的密文分两部分,一部分是AES加密的密文,另一部分是RSA加密的AES口令。对方用RSA先解密出AES口令,再用AES解密密文,即可获得明文。

证书

crypto模块也可以处理数字证书。数字证书通常用在SSL连接,也就是Web的https连接。一般情况下,https连接只需要处理服务器端的单向认证,如无特殊需求(例如自己作为Root给客户发认证证书),建议用反向代理服务器如Nginx等Web服务器去处理证书。

参考源码




Comments

Loading comments...