Java 8新特性:全新的Stream API

廖雪峰
资深软件开发工程师,业余马拉松选手。

Java 8引入了全新的Stream API。这里的Stream和I/O流不同,它更像具有Iterable的集合类,但行为和集合类又有所不同。

Stream API引入的目的在于弥补Java函数式编程的缺陷。对于很多支持函数式编程的语言,map()reduce()基本上都内置到语言的标准库中了,不过,Java 8的Stream API总体来讲仍然是非常完善和强大,足以用很少的代码完成许多复杂的功能。

创建一个Stream有很多方法,最简单的方法是把一个Collection变成Stream。我们来看最基本的几个操作:

public static void main(String[] args) {
    List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
    Stream<Integer> stream = numbers.stream();
    stream.filter((x) -> {
        return x % 2 == 0;
    }).map((x) -> {
        return x * x;
    }).forEach(System.out::println);
}

集合类新增的stream()方法用于把一个集合变成Stream,然后,通过filter()map()等实现Stream的变换。Stream还有一个forEach()来完成每个元素的迭代。

为什么不在集合类实现这些操作,而是定义了全新的Stream API?Oracle官方给出了几个重要原因:

一是集合类持有的所有元素都是存储在内存中的,非常巨大的集合类会占用大量的内存,而Stream的元素却是在访问的时候才被计算出来,这种“延迟计算”的特性有点类似Clojure的lazy-seq,占用内存很少。

二是集合类的迭代逻辑是调用者负责,通常是for循环,而Stream的迭代是隐含在对Stream的各种操作中,例如map()

要理解“延迟计算”,不妨创建一个无穷大小的Stream。

如果要表示自然数集合,显然用集合类是不可能实现的,因为自然数有无穷多个。但是Stream可以做到。

自然数集合的规则非常简单,每个元素都是前一个元素的值+1,因此,自然数发生器用代码实现如下:

class NaturalSupplier implements Supplier<Long> {
    long value = 0;

    public Long get() {
        this.value = this.value + 1;
        return this.value;
    }
}

反复调用get(),将得到一个无穷数列,利用这个Supplier,可以创建一个无穷的Stream

public static void main(String[] args) {
    Stream<Long> natural = Stream.generate(new NaturalSupplier());
    natural.map((x) -> {
        return x * x;
    }).limit(10).forEach(System.out::println);
}

对这个Stream做任何map()filter()等操作都是完全可以的,这说明Stream API对Stream进行转换并生成一个新的Stream并非实时计算,而是做了延迟计算。

当然,对这个无穷的Stream不能直接调用forEach(),这样会无限打印下去。但是我们可以利用limit()变换,把这个无穷Stream变换为有限的Stream

利用Stream API,可以设计更加简单的数据接口。例如,生成斐波那契数列,完全可以用一个无穷流表示(受限Java的long型大小,可以改为BigInteger):

class FibonacciSupplier implements Supplier<Long> {
    long a = 0;
    long b = 1;

    @Override
    public Long get() {
        long x = a + b;
        a = b;
        b = x;
        return a;
    }
}

public class FibonacciStream {
    public static void main(String[] args) {
        Stream<Long> fibonacci = Stream.generate(new FibonacciSupplier());
        fibonacci.limit(10).forEach(System.out::println);
    }
}

如果想取得数列的前10项,用limit(10),如果想取得数列的第20~30项,用:

List<Long> list = fibonacci.skip(20).limit(10).collect(Collectors.toList());

最后通过collect()方法把Stream变为List。该List存储的所有元素就已经是计算出的确定的元素了。

Stream表示Fibonacci数列,其接口比任何其他接口定义都要来得简单灵活并且高效。

计算π可以利用π的展开式:

把π表示为一个无穷Stream如下:

class PiSupplier implements Supplier<Double> {
    double sum = 0.0;
    double current = 1.0;
    boolean sign = true;

    @Override
    public Double get() {
        sum += (sign ? 4 : -4) / this.current;
        this.current = this.current + 2.0;
        this.sign = ! this.sign;
        return sum;
    }
}

Stream<Double> piStream = Stream.generate(new PiSupplier());
piStream.skip(100).limit(10)
        .forEach(System.out::println);

这个级数从100项开始可以把π的值精确到3.13~3.15之间:

3.1514934010709914
3.1317889675734545
3.1513011626954057
3.131977491197821
3.1511162471786824
3.1321589012071183
3.150938243930123
3.132333592767332
3.1507667724908344
3.1325019323081857

利用欧拉变换对级数进行加速,可以利用下面的公式:

用代码实现就是把一个流变成另一个流:

class EulerTransform implements Function<Double, Double> {
    double n1 = 0.0;
    double n2 = 0.0;
    double n3 = 0.0;

    @Override
    public Double apply(Double t) {
        n1 = n2;
        n2 = n3;
        n3 = t;
        if (n1 == 0.0) {
            return 0.0;
        }
        return calc();
    }

    double calc() {
        double d = n3 - n2;
        return n3 - d * d / (n1 - 2 * n2 + n3);
    }
}

Stream<Double> piStream2 = Stream.generate(new PiSupplier());
piStream2.map(new EulerTransform())
            .limit(10)
            .forEach(System.out::println);

可以在10项之内把π的值计算到3.141~3.142之间:

0.0
0.0
3.166666666666667
3.1333333333333337
3.1452380952380956
3.13968253968254
3.1427128427128435
3.1408813408813416
3.142071817071818
3.1412548236077655

还可以多次应用这个加速器:

Stream<Double> piStream3 = Stream.generate(new PiSupplier());
piStream3.map(new EulerTransform())
         .map(new EulerTransform())
         .map(new EulerTransform())
         .map(new EulerTransform())
         .map(new EulerTransform())
         .limit(20)
         .forEach(System.out::println);

20项之内可以计算出极其精确的值:

...
3.14159265359053
3.1415926535894667
3.141592653589949
3.141592653589719

可见用Stream API可以写出多么简洁的代码,用其他的模型也可以写出来,但是代码会非常复杂。



Comments

Loading comments...